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Fig. 6. A packing diagram showing the unit cell defined in line 1 of 
Table 1 and the particles oriented according to the rotation 
function in Fig. 5. 

Diffraction data for this study were collected at 
Brookhaven National Laboratory in the Biology 
Department single-crystal diffraction facility at 
beamline X12-C in the National Synchrotron Light 
Source. This facility is supported by the US Depart- 

ment of Energy, Office of Health and Environmental 
Research. 
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Abstract 

Single-linkage cluster analysis is used to identify 
discrete conformational subgroups for a chemical 
fragment from crystal structure data. Fragment con- 
formations are defined by N, torsion angles for N/ 
occurrences of the fragment in the Cambridge Struc- 
tural Database. Conformational analysis is compli- 
cated by (a) the 2D topological symmetry of the 
fragment, giving rise to permutations of torsion- 

* Author for correspondence. 

angle sequences, and (b) by the presence of 3D 
enantiomers in the original crystal structures. All 
steps in the single-linkage algorithm are modified to 
use fragment symmetry to obtain the optimum tor- 
sional overlap of all fragments. Thus, all symmetry 
equivalents of a given conformation are grouped into 
the same cluster and the final set of clusters rep- 
resents an asymmetric unit of conformational space. 
Principal-component analysis is used to provide a 
visual mapping of the clustering process. The com- 
plete procedure is shown to be effective when applied 

0108-7681/91/010029-14503.00 © 1991 International Union of Crystallography 
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to a test data set of 222 six-membered carbocycles of 
known conformational complexity. 

1. Introduction 

Investigation of the low-energy conformations of 
molecules or substructures is fundamental to the 
process of molecular modelling. A number of com- 
putational procedures exist for this purpose but 
suffer from some limitations, e.g. (a) the size of the 
molecule or fragment that can be processed may be 
limited for computational reasons; (b) reliable force- 
field parameters may not be available; (c) there may 
be a need to postulate, a priori, a number of starting 
geometries in order to scan the whole of conforma- 
tional space. It is reasonable, however, to assume 
that conformations observed in crystal structures are 
close to one or more minima on the potential-energy 
hypersurface. This series of papers describes methods 
by which the crystal structure data may be analysed 
to reveal details of the conformational surface for 
any specified substructure. 

The Cambridge Structural Database (CSD; Allen, 
Kennard & Taylor, 1983) now contains 3D struc- 
tural information from 73 893 X-ray and neutron 
diffraction analyses of organocarbon compounds (as 
of 1 July 1989). The CSD represents an ever- 
growing compendium of conformational data for a 
very broad spectrum of chemical compounds, and a 
common chemical substructure may occur in several 
hundred of these crystal structures. It is therefore 
necessary to develop rapid automatic techniques by 
which such large datasets may be sorted into confor- 
mational subgroups. The subgroups may then be 
ranked in order of population: if two or more well- 
populated subgroups exist, then a representative or 
averaged conformation from each may be used as 
an (energetically preferred) alternative in model 
building. 

For a given substructure, the experimentally 
observed conformations can be expressed in terms of 
N, torsion angles (e.g. the six intra-annular torsion 
angles in cyclohexane), which can readily be derived 
for the Nj occurrences of the fragment in the CSD. 
Two main techniques have been applied to the analy- 
sis of such multivariate data sets. Principal- 
component analysis (Murray-Rust & Bland, 1978; 
Murray-Rust & Motherwell, 1978; Murray-Rust & 
Raftery, 1985a,b) can be used to construct the M, 
mutually orthogonal principal components (linear 
combinations of the original Nt torsion angles) which 
account for most of the variance in the multivariate 
data set. In many cases M, << N, and the dimension- 
ality of the problem is thus reduced. Pairs of the M, 
principal-component 'scores' for the N, fragments 
may then be plotted as 2D scattergrams so that 
conformational subgroups may be identified by 

visual inspection. Occasionally the directions of the 
principal-component axes can be interpreted in 
chemical terms, especially for cyclic systems. This 
topic will be discussed in a separate paper (Allen & 
Doyle, 1991). 

A variety of agglomerative clustering algorithms 
have also been applied to multivariate torsional data 
sets (Norskov-Lauritsen & B/irgi, 1985; Murray-Rust 
& Raftery, 1985a,b; Taylor, 1986a). The first step in 
these techniques is to calculate the conformational 
dissimilarity of each pair of observations in the data 
set. This information is then used to break down the 
observations into 'clusters', each cluster containing 
fragments of similar conformation. The results may 
be presented as numerical tabulations of torsion 
angles for each discrete cluster, from which an aver- 
age conformation is readily derived. 

Principal-component analysis and cluster analysis 
have been shown to work well when applied to 
chemical fragments which are asymmetric. In these 
cases a unique and unambiguous atomic numbering 
can be applied to the fragment. However, many 
fragments exhibit symmetry in their 2D and 3D 
(sub)structures, e.g. carbocyclic and heterocyclic ring 
systems, metal environments in ligand complexes, 
etc. In these common cases there can be severe 
difficulties in interpreting the results from multi- 
variate analyses in terms of the underlying confor- 
mational minima. These difficulties are exemplified 
by a principal-component analysis of phosphate 
groups (Murray-Rust, 1982) and by a cluster 
analysis of bis(triphenylphosphine)metal complexes 
(Norskov-Lauritsen & Biirgi, 1985). 

In this paper we first illustrate the problems caused 
by fragment symmetry with reference to a trial data 
set of six-membered carbocycles. We then 
describe how the standard single-linkage (nearest- 
neighbour) clustering algorithm (Everitt, 1980) can 
be modified to take account of the topological sym- 
metry of the fragment (here O6h ) tO generate a 
unique and asymmetric set of conformational clus- 
ters. These clusters can then be tabulated numeri- 
cally, or displayed graphically using principal- 
component scatterplots based on a symmetry- 
modified data set generated by the new clustering 
algorithm. 

2. Trial data set 

A trial data set comprising six-membered carbocycles 
was chosen because its conformational variants 
(chair, boat, half-chair, twist-boat, etc.) are well 
known. The data set was retrieved using program 
Q U E S T  (Allen & Davies, 1988) of the CSD System 
Version 3.4 as released on 1 January 1989. Six- 
membered rings were located within the general 
restrictions that hits should (a) be organic molecules, 
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(b) have no reported disorder in their crystal struc- 
tures, (c) contain error-free atomic coordinate data, 
and (d) have reported R factors ___ 0-100. To ensure 
conformational variety within a data set of manage- 
able size, three chemically discrete substructure 
searches were performed to locate: 

9a) The first 40 entries in the CSD containing a 
fully saturated ring comprising six Csp 3 atoms; this 
ensured the presence of chair conformations in the 
trial data set. 

9b) The first 40 entries containing a fully saturated 
norbornane system (seven Csp 3 atoms) to ensure the 
presence of boat conformations. 

(c) The first 50 entries containing the cyclohex-1- 
ene system to ensure the presence of half-chair and 
other intermediate conformations. 

The total subset (a)+ (b)+ (c) also contained a 
large number of planar phenyl rings. In the event, 
the initial data set contained nine duplicated entries, 
retrieved in response to two of the substructure 
searches. Duplicates were eliminated to yield 121 
unique entries. 

All numerical calculations, including development 
of the symmetry-modified clustering algorithm, were 
carried out within the framework of the program 
GSTA T. This is the CSD System Version 3 successor 
to GEOM78 (Murray-Rust & Motherwell, 1978) and 
GEOSTAT (Murray-Rust & Raftery, 1985a,b). A 
basic function of the program is the preparation of 
systematic tabulations of user-defined geometry for a 
specified chemical fragment. Here the 2D framework 
connectivity (Fig. 1, left) of a six-membered carbo- 
cycle was matched against the molecular connectivity 
of each crystal structure by GSTA 7". A total of 318 
six-membered rings were located in the 121 unique 
entries retrieved by QUEST. This number exceeded 
array dimensions (250 rings) in the development 
version of the algorithm and was reduced to 222 
rings from the 81 entries having R___ 0-080; short- 
form literature references to these 81 entries are 
given in Table 1.* The trial multivariate data set 
generated via GSTAT is, therefore, a matrix 

* Full bibliographic data for the entries in Table 1 have been 
deposited with the British Library Document Supply Centre as 
Supplementary Publication No. SUP 53526 ( i l  pp.). Copies may 
be obtained through The Technical Editor, International Union of 
Crystallography, 5 Abbey Square, Chester CH1 2HU, England. 

6 

3 

F i g .  1. One of  the six possible mappings of  atom 1 of  a 2 D  search 
fragment (left) onto a 3 D  'target' in the CSD (right). The two 
possible mappings for atom 2 are shown with broken lines. 

Table 1. Short-form references to the 81 CSD entries 
from which the trial data set of six-membered carbo- 

cycles was generated 

The table is ordered alphabetically by CSD reference code. Full bibliogra- 
phic details have been deposited (see deposition footnote). 

Code Journal Vol. Page Y r  
A D D M P Y I 0  J. Med. Chem. 25 427 82 
ABAXES J. Chem. Soc. Perkin Trans. 1 808 78 
ABBUMO10 Acta Cryst. B 37 188 81 
ABCOCX Acta Cryst. B 34 147 78 
ABDSCE Tetrahedron Lett. 4917 79 
ABIPIM Acta Cryst. B 32 2683 76 
A BSI NT 10 Kristallografiya 30 682 85 
A C A M Y A  J. Cryst. Mol. Struct. 9 199 79 
A C A N O B  Acta Cryst. B 32 2852 76 
ACBNFP Acta Crysl. B 35 1512 79 
ACCITRI0  J. Chem. Soc. Perkin Trans. 1 2393 77 
ACESTA S. Afr. J. Chem. 33 45 80 
ACESTC S. Aft. J. ('hem. 33 45 80 
ACFPCH Acta Cryst. B 37 1119 81 
A C H N A P I 0  Acta Cryst. B 32 1918 76 
ACINST Carbohydr. Res. 82 303 80 
A C L O L N  Tetrahedron l-x, tt. 22 2823 81 
ACLYCA I 0 Tetrahedron 40 1783 84 
ACMBPN Acta Cryst. B 36 3128 80 
A C N C H L  J. Org. Chem. 45 2264 80 
A C N C H O  Acta Cry.~t. B 35 983 79 
A C N O D C  Cr)'st. Struct. Commun. 9 1039 80 
A C N R D S  Aust. J. ('hem. 33 2737 80 
A C O H K T  Heir. Chim. Acta 63 2230 80 
ACOLETI0  J. Chem. Sot'. Perkin Trans. I 1494 79 
A C O N T N  10 Acta Cryst. B 37 379 81 
ACSCLR Atilt. J. Chem. 33 1783 80 
ACSESOI0 ('rvst. Struct. Commun. 5 99 76 
A F D E C O  Acta Cryst. B 32 2886 76 
AHDITX Acta Cryst. B 26 207 70 
A H M U N O I 0  Acta Cryst. B 32 1269 76 
ALDRIN J. Chem. Soc. Perkin Trans. 2 2153 72 
A M A P R G  Acta ('ryst. B 33 2392 77 
AMBELL Acta Cryst. B 32 1394 76 
A M H P E N I 0  Bull. Chem. Soc. Jpn 46 1021 73 
AMTBTZ Acta Cryst. B 37 177 81 
AM'I-I 'CD Tetrahedron Lett. 1547 79 
ANDBRBI0  Cryst. Struct. Commun. 6 291 77 
A N D E D P I 0  J. Am. Chem. Sot'. 100 4282 78 
A N D I D O  Acta Cr)'st. B 29 2247 73 
A N D R A N  Acta Cryst. B 35 666 79 
A N O N A L I 0  J. ('hem. Res. 15 429 78 
A N O T D C I 0  J. Org. (?hem. 46 5264 81 
A N Y C L A  Cr)'st. Struct. Commun. 5 775 76 
AOIAND Heh,. Chim. Acta 55 375 72 
AOTETC J. Am. Chem. Sot'. 93 7290 71 
AUSTIN J. Am. Chem. Soc. 98 6748 76 
A X A T R A  Heterocycles 6 1805 77 
AXBCHX Acta Cryst. B 34 1195 78 
A X C M H N  Cryst. Struct. Commun. 2 391 73 
A X M C H D I 0  Acta Chem. Stand. Ser. B 29 1059 75 
A Z C H L N  Acta Crvst. B 36 2337 80 
A Z N A N D  ('~vst. Struct. Commun. 2 33 73 
AZPNHX ('hem. Bet. 114 423 81 
BABBIP Acta ('rvst. B 37 1762 81 
BABXUX Zh. Strukt. Khim. 22 100-3 81 
BAHZEPI0  J. Am. ('hem. Soc. 106 2200 84 
BANJEF Chem. Ber. 114 3533 81 
BAPOCM 10 J. Am. Chem. Soc. 90 74 68 
BARFAB Cryst. Struct. Commun. 10 1539 8 I 
BAZCHP Acta Cr.vst. B 28 2754 72 
BCYLONI0  Acta Cryst. B 28 3228 72 
BEGCUL Acta Crvst. B 38 1043 82 
BEHDUN J. Chem. Soc. Perkin Trans. 2 361 82 
BEHFAV J. Chem. Soc. Perkin Trart~'. 2 111 82 
BEJXIX J. Org. Chem. 46 4021 81 
BEJXOD J. Org. Chem. 46 4021 81 
BEJXUJ J. Org. Chem. 46 4021 81 
BENBCL Acta Cryst. B 30 828 74 
BEPPOB Cryst. Struct. Commun. 11 211 82 
BERLIT Cryst. Struct. Commun. II 207 82 
BEVZOR J. Org. Chem. 47 265 82 
BEWNOG Chem. Bet. I 15 1875 82 
BEXGUG Can. J. Chem. 60 501 82 
BIBXEP Cryst. Struct. Commun. I 1 721 82 
BI DLIJ Kristallografiya 27 273 82 
BIGDUQ J. Am. Chem. Soc. 104 3131 82 
BILVAT J. Org. Chem. 47 2761 82 
B I W D U G  Aust. J. Chem. 35 989 82 
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Table 1 (cont.) 
Code Journal Vol. Page Y r  
BLONGA 10 Acta Cryst. B 28 3234 72 
B M C L M H  Reel J. R. Neth. Chem. Soc. 99 118 80 

T(N/, N,) containing N, = 6 torsion angles (71- -76  in 
Fig. 1) for the N / =  222 fragments. 

3. Effects of fragment symmetry 

The effects of fragment symmetry can be observed 
directly in a listing of the basic data matrix T. Two 
representative sections are shown in Table 2: (a) for 
boat conformations and (b) for chairs. Misalignment 
of torsional sequences is obvious. This arises from 
the atom-by-atom, bond-by-bond mapping of the 
specified 2D fragment of symmetry O6h (Fig. 1) onto 
each 'target' in the CSD. There are six possible ways 
in which atom 1 of the fragment can be mapped to a 
given target, leaving, in each case, two alternatives 
for mapping atom 2. This gives rise to 12 possible 
mappings of the 2D fragment onto a given target 
and the fragment-mapping routine in GSTAT will 
arbitrarily choose one of these 12 alternatives. 

If the target itself has O6h symmetry (a planar 
phenyl ring with all "r values equal to zero), then all 
mappings are equivalent and no problems arise. 
However, in the general case, the targets are 3D 
objects with symmetry lower than D6h, e.g. boats 
(C2v), chairs (D3a), etc .  It is only the 2D connectivity 
representations of these 3D objects which have D6h 
symmetry. The use of this D6h 2D representation in 
the mapping process gives rise to the misalignments 
of Table 2. Remembering also that each 3D target 
has an enantiomorph of equal interest, there is a 
total of 24 ways in which the 2D 'search' representa- 
tion can be mapped onto the target (Table 3). We 
now show how these ambiguities in the mapping 
process manifest themselves in (a) principal- 
component analysis, and (b) normal single-linkage 
cluster analysis. 

4. Principal-component analysis 

A principal-component analysis* of the trial data set 
was performed using routines introduced into 
GSTAT by Murray-Rust & Raftery (1985a,b). The 
results showed that three mutually orthogonal 
principal components PC1, PC2 and PC3, account 
for 47.7, 32.2 and 20.0% (~ = 99-9%) of the total 

* This technique is frequently described as "factor analysis' [see 
e .g .  M u r r a y - R u s t  & B l a n d  ( 1 9 7 8 ) ]  and is so designated in the 
printed commentary  from G S T A T .  Recent statistical terminology 
(Chatfield & Collins,  1980) draws a clear distinction between 
principal-component  analysis (as programmed in G S T A T )  and 
factor analysis, a technique with similar aims but using a different 
underlying mathematical model.  

Table 2. Representative sections of the basic data 
matrix for the trial data set 

f is a fragment number and rL-r6 ( ' )  are the intra-annular torsion angles. 

(a) Boat conformations 
,f TI T2 T 3 T4 T 5 T6 

63 1.7 70"7 - 73-6 2"2 70'2 - 72.0 
69 - 1"2 - 71.7 71-3 1-7 - 70-8 70"4 

114 - 78" I 72-9 0"2 - 69"8 64.4 5"2 
121 70'1 - 1"0 -72"5 72.8 - 4 . 7  -65"8 
131 -70"5 -0"6 71'1 - 6 8 ' 7  -2"5  72"7 
134 68"2 - 73"2 1"8 70.9 - 75"6 4"7 

(b) Chair conformations 
1 - 60 .5  59.7 -61-1 63.4 -60-4  58.9 
9 56-1 - 56.0 56.4 - 53.9 54.7 - 57.2 

12 56.4 55.9 54.4 - 59- I 59.9 - 56.2 
28 - 50.9 54.0 - 59.3 65.0 - 61.2 52.8 

Table 3. The 24 possible torsion-angle sequences which 
can be generated due to the mapping of a 2D fragment 
of  topological symmetry D6h onto 3D targets in the 

CSD 

The sequences are given relative to r~-r6 of Fig. 1, negative signs represent 
enantiomers. The columns INV and s are fully explained in the text. 

Torsional sequence ( r )  
1 2 3 4 5 6 
2 3 4 5 6 1 

3 4 5 6 I 2 

4 5 6 1 2 3 
5 6 I 2 3 4 
6 1 2 3 4 5 

6 5 4 3 2 1 
5 4 3 2 I 6 
4 3 2 I 6 5 

3 2 1 6 5 4 
2 I 6 5 4 3 

1 6 5 4 3 2 
- 1  - 2  - 3  - 4  - 5  - 6  
- 2  - 3  - 4  - 5  - 6  - 1  
- 3  - 4  - 5  - 6  - 1  - 2  
- 4  - 5  - 6  - 1  - 2  - 3  
- 5  - 6  - I  - -2  - -3  - 4  

- 6  - 1  - 2  - 3  - 4  - 5  

- 6  - 5  - 4  - 3  - 2  - I  
- 5  - - 4  - 3 - -2  --1 - 6  
- 4  - 3  - 2  - 1  - 6  - 5  

- 3  - 2  - I  - 6  - 5  - 4  
- 2  - 1  - 6  - 5  - 4  - 3  
- 1  - 6  - 5  - 4  - 3  - 2  

INV 
s 1 

2 

3 

4 
5 
6 

7 
8 

9 

10 
11 
12 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 

variance. Principal-component scores for the 222 
fragments are plotted as scattergrams in Fig. 2: (a) 
PC1 versus PC2, and (b) PC2 versus PC3. A full 
analysis of this principal-component space in chemi- 
cal terms will be given later (Allen & Doyle, 1991); 
only the general features are of interest here. 

Scattergram (a) of Fig. 2 shows three large peaks, 
1, 2 and 2', at PC1 = 0, +2.8 and - 3 . 2  respectively 
and all with PC2=0.  Correlation of the PC scores 
with the original data set shows that 1, the central 
peak close to the origin, arises from phenyl rings of 
approximately O6h symmetry. The slight offset from 
the origin is due to small deviations from ideal 
symmetry in the observed experimental data. Peaks 2 
and 2' at PC2--0 both correspond to chair confor- 
mations. The larger peak, 2, at PC1---2.8 corre- 
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sponds to rings with the torsion-angle sign sequence 
of fragments 9 and 12 in Table 2(b). The smaller 
peak, 2', at PC1 = -3 .2  corresponds to the enantio- 
meric sequence exemplified by fragments 1 and 28 
(Table 2b). The difference in population (peak 
height) of peaks 2 and 2' is a direct consequence of 
the random mapping of the search fragment (Fig. 1) 
onto the targets in the CSD. 

The other main feature of scattergram (a) of Fig. 2 
is a line of population density at PC1 = 0. Again this 
population density is asymmetric about the origin. 
The orthogonal view along PC1 [Fig. 2, scattergram 
(b)] shows a large central peak, which is a super- 
position of peaks 1, 2 and 2' of scattergram (a). The 
line of density in (a) at PC1 = 0 is resolved into six 
small peaks, surrounding the origin peak, in the 
orthogonal view of scattergram (b). Three of these 
peaks arise from boat conformations with torsion- 

I 
I 

2.1- 
I 
I 
I 

0.81 _ 

I 12  

I 1  251 
I 1 33 

-0.4-I 1 

1 
1 
I 

- 1  . ? -  
I 
I 
I 

l"--/ 
40 24 0 ~ 1 0  26 43 PC1 

3.4~ 
2 I 

I I 2 2532 I 
1 I 

I 14 1 
1111 

1 1 1 I 
1 I 

1 

121 11 1 4 2  I 
1 

i I 2 4CB3 
11 1 2211 

11111 1 I - 
I 2 11 I 

112 I 12 I 
11 1113 1 I 

12 I 
I12 

I 1 

51111 
1 I 

I I 1 
-3.0- 53 I i " 

*I .......... I .......... 1 .......... I .......... I .......... I *  
PC2 ~ Nf-222 

(o) 

I 

8- 1 

- -  I 1 

o/-11[,2 21~ 
1[1 
I 

-0.8- 
I 
I 
I 
I I 

-2.0- I i 
I 
I 

-3.3- 

PC2 -3.0 -1.7 -0.5 0.7 1.9 3.1 
*I ....... I ....... I ....... I ....... I ....... I+ 

3.0- II 
1 12 1 1 l I 

11 I 
I 

I 1 I 
I I - 

1 I 
1 21 I 

2 21 1 1 I 
12 1 1 12 1 I 

I 2111 21 
II 2D2 I 

I 3 6JUI2 1 I 
I 31423 I 22 27 I ~ j 
I 1 I I I 32 I 

1 1 1 12 2 
I 12 I I 
1 IIii I t 
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1 
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Fig. 2. Principal-component  plots derived from the raw data set of  
222 six-membered carbocycles: (a) PC I v e r s u s  PC2, (b) PC2 
v e r s u s  PC3. The frequency o f  incidence o f  fragments is recorded 
on a scale o f  1-35, where A = 10, B = 11 . . . .  Z = 35. 

angle sequences corresponding to fragments 63, 114 
and 121, respectively in Table 2(a); a further three 
enantiomeric peaks are exemplified by the (enantio- 
meric) fragments 69, 134, and 131 of Table 2(a). 
Again there is asymmetry in the peak heights caused 
by random mapping of the substructural fragment. 

The principal-component analysis has, in fact, 
produced a very clear visual classification of the trial 
data set. However, considerable manual work or 
additional programming is required to provide list- 
ings of torsion angles, means, e.s.d.'s of means etc., 
for individual conformational minima from the 
principal-component results. Further, in cases of 
topological symmetry, it is essential to place the 
small subgroups 2 and 2' and the six peaks, grouped 
about the origin of scattergram (b) and which rep- 
resent boat conformations, into two larger sub- 
groups representing chairs and boats respectively. 

The principal-components method is excellent for 
asymmetric fragments, but we have shown that the 
random mapping of symmetric fragments onto CSD 
entries causes two major problems of interpretation: 
(a) a given conformational subgroup will be spread 
over a number of much smaller symmetry-related 
groups; (b) the symmetry of the principal- 
component scattergams is partial rather than exact, 
the smaller symmetry-related groupings are of 
unequal (even zero) population and can be difficult 
to locate in the scattergrams. 

5. Single-linkage cluster analysis 

Single-linkage and complete-linkage algorithms are 
two of the most commonly used methods of 
agglomerative clustering (Everitt, 1980). They have 
recently been applied to crystallographic data 
(Norskov-Lauritsen & Biirgi, 1985; Taylor, 1986a,b). 
In this section we describe the normal single-linkage 
algorithm in some detail. This description is included 
because each step of the single-linkage algorithm 
must be modified to take account of symmetric 
fragments. We also describe the application of the 
normal (unmodified) algorithm to the trial data set. 
Single-linkage clustering comprises the steps 
described below. 

Step O. Calculation of dissimilarity coefficients 
All clustering algorithms employ some measure of 

the dissimilarity between pairs of objects (fragments) 
p and q. Here we calculate the conformational 
dissimilarity coefficient D~q by calculating the 
Minkowski metric (Everitt, 1980) from the torsion- 
angle sets 7" i (i = 1---,N,): 

Onpq:[i~='l(ATi)pq] TM ( 1 )  
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where 

(ATi)pq = I( ' r i)p --  (Ti)ql/18ON,. (2a) 

o r  

(A~-i)pq = [360 -I(rDp - (7g)ql]/18ogt. (2b) 

The power factor n in (1) is an integer variable 
usually taken as n = 1 (city-block metric) or n = 2 
(Euclidean metric). The city-block metric was used 
for all examples quoted in this paper. The values of 
the (A"i'i)pq in (1) are taken as the minimum value 
generated by (2a) and (2b), which arise from the 
phase restriction - 180 < 7" i --< 180 °. The Dpq values 
are normalized to lie in the range 0-1 by the 
denominator of 180N, in (2a) and (2b). For Ny frag- 
ments we hence construct a square dissimilarity 
matrix of order N s which is symmetrical about the 
(zero) diagonal. Thus only the upper or lower tri- 
angle [ N f ( N f -  1)/2 coefficients] need to be calculated 
and stored. 

Step 1. Formation o f  the initial cluster 

The N i fragments are initially assigned to N s 
clusters of occupancy one. Larger groupings are then 
formed on the basis of the D~pq values. The process is 
initiated by combining the two most similar frag- 
ments [i.e. the two fragments (a and b, say) which 
have the smallest dissimilarity coefficient] into a 
single cluster. There are now N s -  1 clusters, one of 
which has occupancy 2. In the single-linkage 
algorithm the dissimilarity of the new cluster (a and 
b) and any other fragment (c) is taken as the mini- 
mum value of D~c and D~c. We now examine the 
dissimilarity matrix for the next smallest value. Two 
alternatives occur: a coefficient of the type D<~.a is next 
smallest and we proceed to step 2, or a coefficient of 
the type D]<. or /Y~b<. is next smallest, whence we 
proceed to step 3. 

Step 2. Formation of  an additional new cluster 

If DT.d is next smallest, neither (c) nor (d) having 
been clustered with any other observation, then (c 
and d) form a new cluster of occupancy 2 and the 
number of clusters is reduced by one. The dis- 
similarity of (c and d) to any fragment (e) is assessed 
as described at step 1. However, we must now take 
into account the dissimilarity of the existing cluster 
(a and b) and the new cluster (c and d). For the 
single-linkage algorithm this is taken as the minimum 
value of D"~<, lY]~d, D~bc and D~,d. We now find the next 
smallest dissimilarity Dnpq and proceed on the basis of 
whether it is: (i) fragment-fragment (p and q not in 
any current cluster) in which case step 2 is reiterated; 
(ii) cluster-fragment (p in a cluster of size > 1, q is 
not) in which case proceed to step 3; (iii) cluster- 
cluster (p and q already in different clusters of size 

> 1) in which case proceed to step 4; (iv) cluster- 
cluster (p and q in same cluster already) in which 
case ignore, choose next lowest Dgq and assess via 
(i)-(iv). 

Step 3. Addition of  a fragment to an existing cluster 

If/Y'~c or D'gb<. is the next smallest dissimilarity and 
(a and b) already form a cluster, then (c) is added to 
form (a, b and c) of occupancy 3. The total number 
of clusters is reduced by one. Fragment (c) enters the 
cluster by virtue of its proximity to either (a) or (b). 
The dissimilarity of (a, b and c) to any fragment (d) 
is the minimum value of Dnad, D~d and Dnd in the 
single-linkage method. We now locate the next 
smallest value /~pq and proceed as described at (i)- 
(iv) of step 2. 

Step 4. Addition of  a cluster to a cluster 

If D~<. is the next smallest dissimilarity, and (b) and 
(c) are in different clusters (a and b) and (c and d) 
then they merge to form (a, b, c and d) of occupancy 
4. The total number of clusters is reduced by one. 
The clusters merge by virtue of the proximity of 
fragment (c) to fragment (b). We now locate the next 
smallest Dpq and proceed as described at (i)-(iv) of 
step 2. 

Step 5. Ending the clustering process 

Cluster formation occurs at step 1, and at every 
iteration of steps 2, 3 and 4. In each case the number 
of clusters is reduced by one from the original N i 
singletons. The process ends naturally at step N s -  1 
when all fragments are in a single cluster. There is 
an extensive literature (Everitt, 1980) describing 
methods for detecting the optimum clustering point 
between steps 1 and N f -  1. In our implementation, 
we initially generate a listing of all clusters at step 
Ni/2 (Nr even ) or (N i -  1)/2 (Nf odd), and then at five 
equally spaced steps up to the final step (N s -  1). 
Thus, for N s = 222 in the trial data set, listings occur 
at steps 111, 133, 155, 177, 199 and 221. The listing 
for a given cluster at any step contains the fragment 
number and torsion angles of its members, together 
with their mean, the e.s.d.'s of mean and sample, and 
the population of the cluster. After step N i -  1 we 
generate two graphs which summarize the clustering 
process: 

(i) A plot of step number (X) versus the 'fusion 
dissimilarity' D~, i.e. the value of/~pq which gave rise 
to cluster formation at that step (Fig. 3a). 

(ii) A plot of step number (X) versus a AD~ value 
calculated as the positive difference between D~ 
values at steps X and X -  1 (Fig. 3b). 

A sharp rise in either of these plots indicates that 
higher/~pq values are entering the clustering process, 
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i.e. very dissimilar fragments or clusters are being 
merged. An optimum step number is selected by a 
visual scan of the initial cluster listings and the plots, 
and will be guided by chemical expectations. This 
step number is input as a program parameter to 
generate final output only at the selected optimum 
step. 

Results from the unmodified single-linkage algorithm 

Cluster step 160 (of 221) was selected as a stop 
point for the trial data set by use of the plots of Figs. 
3(a) and 3(b) and a visual scan of the cluster listings 
noted above. At this stage 184 (of 222) fragments 
had been assigned to 24 clusters of population Np >__ 
2, leaving 38 fragments as singletons. Mean torsion 
angles (with e.s.d.'s) are shown in Table 4 for the top 
11 clusters with Np >--4. The single-linkage results 
represent a numerical expression of the principal- 
component scattergrams of Figs. 2(a) and 2(b). A 
single large cluster (No = 1) contains all phenyl rings. 
The boat conformers from norbornanes with puck- 

ering angle - 7 0  ° are spread over five clusters rep- 
resenting five of the six possible symmetry sets of 
Table 2(a). The single-linkage algorithm has also 
formed a sixth cluster of normal boats with puck- 
ering angle - 5 6  °. This separation of cluster 7 from 
its more puckered equivalent, cluster 2, is quite 
justifiable in view of the e.s.d.'s obtained. There are 
two well populated, enantiomorphic clusters of chair 
conformations, and a number of smaller clusters 
representing half-chair, twist-boat and sofa confor- 
mations, of which clusters 10 and 11 are the largest. 

The symmetry problems identified earlier are 
clearly apparent in the single-linkage results. The 
asymmetry of cluster populations is obvious in Table 
4 where Np is 19 and 38 for the two enantiomeric 
chairs, and Np ranges from 1 to 15 for the individual 
boat variants of Table 2(a). 

6. Symmetry-modified single-linkage clustering 

We have chosen to modify the single-linkage 
algorithm to take account of 2D fragment symmetry. 
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Fig. 3. Graphs of fusion dissimilarity, Dx, v e r s u s  step number  x (a and c) and of fusion-dissimilarity difference [Dx - Dx_ ,] v e r s u s  step 

number x (b and d). The graphs (a and b) are for the unmodified algorithm and show higher Dx and [D~ - D,_ ,] values than in those 
(c and d) derived from the modified algorithm. The stop step chosen is indicated on all four graphs. 
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C l a s s  

Phenyl 

Boat 

Table 4. Mean torsion angles (°; e.s.d. 's in paren- 
theses) for major clusters obtained by the unmodified 
single-linkage algorithm at step 160 for the trial data 

s e t  

N,. = c l u s t e r  n u m b e r ,  3I, = p o p u l a t i o n  o f  c lu s t e r .  

N,. Np Ti ~'2 T~ "r4 7"5 7~ 
1 36 0-6 (3) 0 0  (3) - 0 8  (6) 1"0 (6) -0"4  (3) - 0 4  (4) 

Chair  

Half-chair 

2 15 4"8(17) -75"5(11)  71"4(8) l-I (11) -70"8(10)  67"2(16) 
3 15 0"1 (9) 65"9 (17) -65"9 (25) -0"4  (15) 66-7 (17) -66"6  (22) 
4 7 63-6 (33) 0"5 (17) -63-5  (31) 62-2 (35) 0"5 (18) -63"4 (19) 
5 4 - 70.6 (26) 72-2 (4) - 1-3 (5) -69"7 (3) 69-6 (24) -0"4  (21) 
6 4 67"9 (4) - 71"4 (10) 0"8 (6) 70.7 (16) -69"3 (35) 0"7 (21) 
7 4 -0"3  (8) - 56"8 (11) 54"5 (10) 0-5 (7) - 55"8 (10) 57'0 (8) 

8 38 54"3 (9) - 53'7 (8) 54'1 (9) - 55"4 (12) 55"4 (9) - 54-7 (7) 
9 19 -53"9 (15) 53-7 (10) -53"4 (15) 53"9 (14) - 53-6 (17) 53'1 (20) 

10 7 59'8 (20) -38-8 (34) 8-3 (29) 2"5 (20) 17.6 (39) --48-6 (28) 
11 5 12"9 (27) - 2-2 (9) 21"2 (29) -50"4 (37) 62-7 (22) -42"6 (25) 

This is the most commonly used algorithm (Everitt, 
1980) and is conceptually simple in its consistent 
selection of minima from the dissimilarity matrix. 

Symmetry specification 

The modified algorithm requires knowledge of the 
torsional sequences (s, Table 3) which are equivalent 
under the 2D topological symmetry of the fragment. 
The 12 non-enantiomeric sequences for the O6h sym- 
metry of the trial data set have INV = 1 in Table 3. In 
order to be general, our implementation requires the 
user to specify the equivalent torsional sequences 
individually. Each complete symmetry specification 
consists of Ns records, each containing N, numerical 
values. The symmetry matrix S(N ,  Nt) should form a 
group. Enantiomeric sequences can be specified in 
two ways. (a) A simple flag is set by the user to 1 or 
0, instructing the algorithm to consider automatically 
(1) or not (0) the all-sign inverted torsional sequen- 
ces, e.g. the 12 additional sequences with INV = - 1 
in Table 3. (b) The positive sequences are repeated 
with explicit negative signs specified to generate the 
complete explicit set of 24 permutations for the 
current example. Mode (a) is appropriate for all rigid 
fragments, but mode (b) may be necessary for flexible 
systems. This point is further discussed in Part 3 of 
this series (Allen, Doyle & Taylor, 1991b). 

It is possible to detect the fragment symmetry 
automatically, but we have not yet implemented this 
option. Instead, some shorthand notations for speci- 
fic symmetries are provided from which the sym- 
metry matrix S(N~, N,) can be derived. For 
D6h-symmetric fragments (see Table 3) the matrices 
which give rise to the forward (Ns = 1-6) and reverse 
(Ns = 7-12) rotations of the original sequence form 
Abelian groups of order 6. For the general case of 
D,,h symmetry we use a keyword CROT to generate 
the 2n cyclic rotations and fill S(N ,  Nt) automa- 
tically. Individual symmetry specifications may be 

given in any order and are used to modify steps 0-4 
of the single-linkage algorithm as follows. 

Step O. Calculation of  symmetry-modified dissimilarity 
coefficients 

The Dpq are calculated from equations (1) and (2) 
by keeping the torsional sequence (ri)p static and 
allowing the (r~)q to adopt all of the N.~ variants (and 
enantiomers if required). The minimum Dpq value 
obtained in this loop is stored in the dissimilarity 
matrix. The symmetry operator (+_ s), which relates 
the permutation of the (ri)q to their sequence in the 
original data matrix T(Nj; N,), is stored in a corre- 
sponding overlap matrix Opq. The basic multivariate 
data matrix T is never altered: a given fragment q 
may adopt any or all of its N~ possible sequence 
variants in the generation of minimized dissimi- 
larities with different static fragments p. The matrix 
of minimized dissimilarities is used in all subsequent 
steps in the modified algorithm. This exhaustive cal- 
culation results in optimum overlap of the (ri)q onto 
the (r~)p, despite the fact that dissimilarities within 
the loop on N, show a very wide range, owing to the 
3D symmetry of the particular conformations rep- 
resented by fragments p and q. 

Step I. Formation of the initial cluster 

If fragments (a and b) form the initial cluster 
according to the minimum symmetry-modified Onpq, 
then (a), the lowest-numbered fragment, is taken as 
the root of the cluster. This information is stored in a 
cluster-overlap array of dimension Nj~ by setting C~ 
= 1, i.e. the root has torsion angles identical to those 
in the original data matrix. The symmetry rela- 
tionship of the (ri)b to the static (r;), is stored in the 
cluster-overlap array by setting Cb = O]b. 

Step 2. Formation of  an additional new cluster 

If fragments (c and d) form a new cluster of 
occupancy 2, then (c) is regarded as the root (Cc = 1) 
and the symmetry relationship of (d) to (c) is stored 
by setting Ca = O,na. 

Step 3. Addition of  a fragment to an exist&g cluster 

Fragment (c) may enter cluster (a, b . . . .  ) where (a) 
is the root, in two different ways: 

(i) D],. is a minimum, (c) enters (a and b) via its 
proximity to (a), the root of the cluster for which C~ 
= 1 (from steps 1 or 2 above). Since we only store 
the upper triangle of the dissimilarity matrix, there 
are two possible values for Co. If (c) > (a) then C,. = 
0~,.. If (c) < (a) then the stored overlap coefficient is 
0"~, i.e. the symmetry operation (S~) which gives 
optimum overlap of the (ri)a onto a static (r;)c. To 
locate the operator (&) which reverses this situation 
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(a) 

(b) 

Fig. 4. (a) Overlay plots of all members  of the four major clusters of Table 6 (after symmetry-modified single-linkage analysis). Top: 
norbornane boats (cluster 2, Nr = 34) and phenyl  rings (cluster 1, Nf = 35); bottom: half-chairs (cluster 8, Ny = 26) and chairs (cluster 
6, Nf = 51). (b) The 'most representative fragment '  f rom each of the top nine clusters of  Table 6 having a popula t ion  Np ~4.j.Top 
row (left to right): norbornane boats (Arc =2) ,  phenyl rings (Arc = 1) and half-chairs (Nc = 8). Middle row (left to right): chairs 
(N~ = 6), 'normal '  boats (N,. = 3) and distorted chairs (Nc = 7). Bottom (left to right): distorted boats (Nc = 5), distorted boats (No = 4) 
and sofas (N,  = 9). 

[ To face p. 36 
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(a) 

(b) 

Fig. 5. Principal-component scattergrams PC1 (vertical) versus PC2 (horizontal) for the 183 fragments assigned to clusters of population 
Np-> 2 by symmetry-modified single-linkage algorithm at step 170. The largest clusters are colour coded as follows (Nc with respect 
to Tables 6 and 7): green (phenyl rings, Nc = 1); red (norbornane boats, Nc = 2); turquoise ( 'normal' boats, N~ = 3); dark blue (chairs, 
Nc = 6); light blue (half-chairs, Nc = 8). All other fragments are coloured yellow. (a) Incomplete re-orientation (see text - clusters 
in random 'asymmetric units'). (b) Complete re-orientation (see text - clusters now in closest proximity). (a) and (b) are drawn with 
the same (arbitrary) scale for direct comparison. 
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we first apply (S,,) to the original torsional sequence 
(ri)a, so that it now has optimum overlap with (ri)c, 
and store the result in a subsidiary test array. We 
then apply all of the Ns symmetry operations in turn 
to the test array, until the resulting torsional 
sequence is identical to the (r;),, held in the original 
data matrix T. The symmetry operation which gives 
this result is then (&) and this value is stored in the 
cluster-overlap array as Co. There is no need to 
recalculate any dissimilarities in this operation. 

(ii) /~hc is a minimum, (c) enters (a and b) via its 
proximity to (b), which is not the root of the cluster. 
Again there are two derivations of the overlap coef- 
ficient C~ with respect to the cluster root (a). If (c) > 
(b) we first apply the operator stored in O"b,. to 
torsional sequence (c) and store the result in a subsi- 
diary array. We then apply the symmetry operator 
Cb, which relates (b) to the root (a). This results in a 
new subsidiary array containing a set of (r;)c, which 
has been re-sequenced twice, and represents the best 
overlap of (r;)~ onto the root sequence represented 
by (r;)a. We now apply all N~ operators to the 
original sequence of (r;)~ from the basic data matrix 
T. This process is stopped as soon as the sequence 
(r;),. is generated. The operator which gives this result 
is then stored in the cluster-overlap array as C~. In 
cases where (b) > (c) we must first perform the over- 
lap reversal described at (i) above before proceeding 
as for (c )>  (b). For many puckered rings the Cc 
value resulting from the above rigorous approach is 
simply O]~ or its inverse. However this cannot always 
be guaranteed. 

Table 5. Results o f  the symmetry-modified single- 
linkage clustering algorithm 

C l u s t e r  2 a t  s t e p  170 c o n t a i n s  34  b o a t - f o r m  r i n g s  f r o m  t h e  n o r b o r n a n e s  o f  

t h e  t r i a l  d a t a  se t .  T o r s i o n  a n g l e s  a r e  g i v e n  in '~. 

C l u s t e r  n u m b e r  2 

F r a g .  I N V . s  r~ r2 r3 r4 r s  r6 

49 8 0-0 71.4 - 7 1 . 5  0.0 71.5 - 7 1 . 4  

59 - 4 3.8 67.7 - 72.3 1.9 70.0 - 73.0 
63 4 2.2 70.2 - 72.0 1.7 70.7 - 73.6 

65 - 12 1.2 72-6 - 7 3 . 4  0.2 72.3 - 7 3 . 0  
66 1 1.2 72.6 - 73.4 0.2 72-3 - 73.0 
67 4 0.5 70. I - 70.2 - 0.3 70.2 - 70.4 
68 -- 12 1"6 69"0 - 7 0 . 2  0"0 70"1 - 7 1 . 4  
69 9 1.7 71-3 - 7 1 . 7  - 1"2 70.4 - 7 0 . 8  
74 4 1.7 69.6 - 7 1 . 7  -0"1  72.6 - 7 2 . 3  
79 - 9  8"3 65.7 - 6 7 . 1  - 6 . 4  77.3 -80 -1  
86 12 8.1 66"0 - 7 1 . 8  4"9 68.2 - 7 5 . 5  

87 12 5"9 64.9 - 70.1 2'4 72"6 - 76.7 
91 12 9.0 63.7 - 6 8 . 8  - I .I  74.5 - 8 0 " 6  
95 12 2.8 67.8 - 70.7 I. 1 72.0 - 74"9 
99 12 2"6 68' 1 - 70.3 I '0  72.2 - 74"5 

104 9 7.6 66.9 - 6 8 . 6  - 5 " 3  78-1 - 8 0 " 6  
114 7 5.2 64.4 - 6 9 " 8  0"2 72.9 - 7 8 . 1  
121 - 5 4.7 65.8 - 70.1 I '0  72"5 - 72"8 
122 9 0"2 74-8 - 74-3 - 0.6 74.5 - 74-6 
123 - 4  0.4 74.6 - 7 3 . 6  - 0 . 1  74.5 - 7 4 . 9  
128 4 3.0 69. I - 71.7 1-9 70-0 - 73.7 
130 - 1 1-0 70"0 -68"1  0.6 67.1 - 7 1 . 6  

131 - 8  2.5 68.7 -71 .1  0"6 70"5 - 7 2 - 7  
132 12 7.9 63"2 - 6 3 " 2  - 7 . 9  76.9 - 7 6 . 9  
134 6 4.7 68-2 - 73-2 I-8 70.9 - 75.6 

136 - 6  4.2 68"7 - 7 2 . 8  1.5 69"2 - 7 3 - 3  
137 - 6  2-9 69-2 - 7 1 . 9  1"6 70-4 - 7 4 . 0  
139 - 3  2.4 69.4 - 6 6 . 6  0 - 4  66.3 - 7 1 . 3  
167 - 10 0.4 71.0 - 6 8 . 3  0.4 68"9 - 7 3 . 4  
168 3 0.9 68"0 - 63"5 - 2"2 67.2 - 69"8 
219 - 12 0"2 62.0 - 6 0 . 2  - 3 ' 0  65'0 - 6 3 - 0  
220 - 2 0 '6 66"6 - 63" I - 2"4 66"7 - 69" 1 
221 4 - 0 " 5  63'3 - 6 2 . 4  - 1.6 64.4 - 6 3 . 2  
222 11 - 0 . 6  68.8 - 6 3 " 8  - 1.7 66.8 - 6 8 - 3  

No~ 34 34 34 34 34 34 
Mean  2.9 68.3 - 69.5 - 0.3 70.9 - 73.2 
M a x i m u m  9-0 74.8 - 60.2 4-9 78-1 - 63.0 
M i n i m u m  - 0.6 62.0 - 74-3 - 7.9 64.4 - 80.6 

E.s.d. sample  2.8 3.1 3.7 2.5 3.3 3.9 
E.s.d. m e a n  0.5 0.5 0.6 0.4 0.6 0.7 

Step 4. Addition of  a cluster to an existing cluster 

Clusters (a, b, ...) and (c, d, ...) are fused if e.g. D~c 
is the current smallest dissimilarity. Here we arbitra- 
rily denote one of the clusters, say (a and b), as the 
'primary cluster' and the cluster-overlap coefficients 
for Ca, Cb, ... remain unaltered. The coefficients C,., 
Ca, ... must, however, be changed to reflect the fact 
that (a) is now the root of a composite cluster (a, b, 
c, d, ...). We first obtain Cc as described at (3) above 
and then apply this symmetry operation to all other 
members of the secondary cluster (c, d, ...). 

Step 5. Ending the clustering process 

The single-linkage algorithm is allowed to run to 
completion at step N j -  1 with all fragments in the 
same cluster. A suitable end-point is assessed from a 
visual scan of the clustering process and examination 
of the X versus D and X versus AD plots, as described 
above for the normal algorithm. 

Presentation of  numerical results 

In printing the torsion-angle tables for any cluster 
at any step (including the last), the current cluster- 

overlap coefficients are applied to the (r;) of the basic 
data matrix T. Table 5 shows a typical cluster gener- 
ated by the symmetry-modified algorithm and con- 
tains the highly puckered (norbornane) boat 
conformers taken from step number 170. All of the 
fragments of Table 2(a) are now to be found in this 
cluster of 34 entries, which has fragment 66 as its 
root. 

For each cluster we present a simple statistical 
summary (see Table 5) comprising (i) the number of 
observations Np in the cluster, (ii) the maximum and 
(iii) the minimum values of each (r;), (iv) the means 
(-ye), (v) the sample standard deviations, o'(r;) of the 
r~, and (vi) the standard errors, o'(~i) of the means: 

U~ 
Y,= 2 r,/Np (3) 

i = 1  

o'(r~) = - r,.) 2 ~(Alp- 1 (4) 
i 

O'(~i) = o¢("i'i)/( gp)  I/2. ( 5 )  

The unweighted mean (~i, equation 3) is used here, 
rather than any form of weighted mean, since the 
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unweighted mean has been shown (Taylor & 
Kennard, 1986) to be preferable for soft parameters 
such as torsion angles. The statistical summary is 
generated for all clusters with Np >_ 3. 

Further analysis of each cluster is possible, in 
terms of cluster shape, best overlay of the symmetry 
variants, identification of the 'most representative' 
member, etc. A full discussion of these topics is 
presented in Part 3 of this series (Allen, Doyle & 
Taylor, 1991 b). 

Numerical results for the trial data set 

The graph of dissimilarity against step number for 
the symmetry-modified algorithm is shown in Fig. 
3(c); the corresponding graph of dissimilarity 
differences is shown in Fig. 3(d). Consideration of 
these graphs, in conjunction with the complete clus- 
ter listings at steps 111, 133, 155, 177, 199 and 221, 
led to the selection of step 170 as representing 
optimum clustering. At this stage 183 fragments had 
been assigned to 13 clusters of size Np _ 2 leaving 39 
singletons. These data should be compared with the 
184 fragments in 24 clusters at step 160 of the 
unmodified algorithm. 

Table 6 lists the mean torsion angles for the 10 
clusters with Np_  3 and these results should be 
compared with those of Table 4 from the unmodified 
algorithm. Apart from the D6h phenyl rings, the 
major clusters of Table 4 (2-6 = norbornane boat, 
8-9 = chair, 10-11 = half-chair) are now replaced by 
a single cluster in each case in Table 6 (2 = nor- 
bornane boat, 6 = chair, 8 = half-chair). These latter 
clusters (2, 6, 8 of Table 6) now represent compact 
clusters, as evidenced by their low tr(~;) values, but 
their populations (Np) do not reflect the sums of their 
'contributors' from Table 4. Thus the symmetry- 
modified algorithm has generated two clusters of 
chair-form rings: the normal chairs (cluster 6, 51 
fragments) and a smaller cluster of highly puckered 
chairs (cluster 7, 4 fragments). Their Np sum (55) is 
close to the 57 chairs + enantiomorphic chairs of 
clusters 8 and 9 of Table 4, but the division is now 
much more chemically useful. There is no doubt that 
the high e.s.d.'s for cluster 9 of Table 4 are due to the 
presence of a number of highly puckered rings. Simi- 
lar comments apply to a comparison of clusters 2-6 
of Table 4 and the normal and highly puckered 
norbornane boats of clusters 2, 4 and 5 of Table 6. 
Clusters 4 and 5 are separated from cluster 2, and 
also from each other, since cluster 4 contains one 
torsion angle > 80 ° whilst cluster 5 exhibits two such 
angles. 

The symmetry-modified algorithm also enhances a 
number of the smaller conformational subgroups of 
Table 4. The 12 half-chairs of clusters 10 and 11 
(Table 4) are now augmented by a number of smaller 

Table 6. Mean torsion angles (°; e.s.d.'s in paren- 
theses) for major clusters obtained with the symmetry- 
modified single-linkage algorithm at step 170 for the 

trial data set 

Nc 

N, N, 
1 35 

= c lus te r  n u m b e r ,  Np = p o p u l a t i o n  o f  c lus ter .  

C lass  
Phenyl 

Boat 2 
3 
4 
5 

Chair 6 
7 

Half-chair 8 

Sofa 9 

Screw-boat 10 

34 2.9 (5) 68.3 (5) 
II 1.0 (4) - 57-5 (6) 
5 - 15-2 (6) 81.3 (5) 
4 24.6 (6) 52.3 (5) 

Tl 7"2 1"3 T4 "/'5 "/'6 
I ' 1 ( I )  0"6(2) --1 '0(2) --0"4(1) 2'1 (2) --2"4(3) 

-- 69"5 (6) -- 0'3 (4) 70"9 (6) -- 73"2 (7) 
52"4 (12) 3"0 (10) --56"4 (6) 57"0 (3) 

-66 .0  (9) - 8 . 2  (10) 73.9 (11) -58 .6  (7) 
-58 .2  (4) - 14.3 (5) 85.9 (5) - 9 2 ' 9  (5) 

- 57.9 (4) 58-2 (4) - 54.3 (6) 50.1 (7) 
-81 .7  (7) 81.2 (3) -69 .9  (3) 52.3 (5) 

10.9 (6) -42.1 (7) 61.7 (7) -48 .2  (7) 

1.4 (7) 0-1 (9) 27.9 (12) - 54.4 (19) 

-36.1 (14) 51.5(9) -32 .9 (8 )  -2 .4 (13)  17.7(8) 2.4(8) 

51 -50.8  (6) 54.7 (3) 
4 - 58.2 (4) 78.8 (4) 

26 18"3 (6) 1-0 (4) 

4 52-5 (12) -25"3 (12) 

clusters Np_  3 and individuals to give cluster 8 
(Table 6) with 26 members. Similarly the small clus- 
ter 7 (Np = 4, Table 4) of normal boat conforma- 
tions, flattened with respect to the dominant 
norbornane fragments, is now enhanced to the 
eleven-membered cluster 3 of Table 6. Finally two 
conformations of cyclohexane [the sofa (1,2- 
diplanar) and screw-boat (1,3-diplanar)] are revealed 
for the first time by the symmetry-modified 
algorithm as clusters 9 and 10 of Table 6. These few 
fragments were spread over too many symmetry 
variants to be revealed as clusters in the unmodified 
analysis of Table 4. 

Presentation of results in graphical form 

The most obvious graphical illustrations of the 
effectiveness of the symmetry-modified algorithm are 
(a) superimposed conformational plots for each 
discrete cluster, and (b) plots of a typical fragment 
from each cluster. A number of illustrations of this 
type are shown in Fig. 4 for the trial data set. Fig. 
4(a) gives a visual impression of variance within a 
cluster, while Fig. 4(b) confirms that the automatic 
assignments are chemically sensible. They do not, 
however, show how individual clusters are related to 
each other in conformational space. 

The most important visual representation of the 
symmetry-modified results is given by a principal- 
component analysis of the results at step N j -  1 i.e. 
when the entire data set has been assigned to a single 
cluster. For the unmodified algorithm the single clus- 
ter is identical to the original data matrix T; the 
principal-component plots before and after clustering 
are therefore identical and are illustrated in Fig. 2. 
For the modified algorithm the principal component 
plots of the final, single cluster now have some 
interesting properties, as a result of the continuous 
re-orientation of fragments by repetition of steps 1-4 
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of the symmetry-modified algorithm. The final single 
cluster now represents the best overlay of all frag- 
ments. The final cluster (step N f - 1 )  from the 
symmetry-modified algorithm therefore represents a 
unique 'asymmetric unit' of conformational space. 

The formation of this unique asymmetric unit is 
clearly illustrated by the coloured scatterplots of Fig. 
5. In our initial implementation the clustering pro- 
cess was simply terminated at the chosen stop point, 
here at step 170, and the final (step N / -  1) cluster 
was never created. It is data from this implementa- 
tion which are collected in Table 6. It is obvious that 
the two boat clusters 2 and 3, for example, are not 
yet in their closest mutual proximity in conforma- 
tional space. A principal-component analysis, based 
on the 183 re-oriented fragments in clusters with Np 
>_ 2, had three components (PC1 = 62.6, PC2 -- 34-7, 
PC3 = 2.6%) accounting for 99-9% of total variance. 
The scattergram of PC1 versus PC2 scores in Fig. 5(a) 
shows the distribution of major clusters. In particu- 
lar the normal boats (cluster 3, Table 6) are well 
separated from the norbornane boats of cluster 2. 
Termination at the chosen stop point yields chemi- 
cally sensible clusters, but drawn from random 
asymmetric units of conformational space. 

This problem is avoided by recording the cluster- 
membership details at the chosen stop point (here 
170), and then allowing the process to go to com- 
pletion at step N r -  1 (here 221). We then re-assign 
the stored cluster numbers to each fragment before 
generating statistics and entering the principal- 
component analysis. Results from this additional 
process are given in Table 7 and in Fig. 5(b). The 
torsion-angle means for clusters 2 and 3 (Table 7) are 
now correctly sequenced so as to bring them into 
closest mutual proximity. The principal-component 
plot (Fig. 5b) is now based on the 183 fully re- 
oriented fragments (PC1 = 60.6, PC2 = 34.5, PC3 = 
4.7%, ~ = 99.8% of total variance) and is drawn 
with the same axial scales as Fig. 5(a). The 
(turquoise) normal boat cluster 3 is now in close 
proximity to the (red) norbornane boat cluster 2 in 
Fig. 5(b); re-location of other clusters can also be 
observed by comparing Figs. 5(a) and 5(b). 

Asymmetric versus symmetric clusters 

The procedures so far described result in the for- 
mation of discrete clusters within an asymmetric unit 
of conformational space. For this reason the mean 
torsion angles (Table 7) defining the cluster centroids 
all correspond to asymmetric conformations. It is 
obvious, however, that many of the reported asym- 
metries are very minor: the cluster centroid lies close 
to a position of special symmetry in conformational 
space. Thus, our chemical sense would predict mean 
torsion angles of zero for a phenyl ring, and might 

Table 7. Mean torsion angles (°; e.s.d.'s in paren- 
theses) for major clusters obtained with the symmetry- 
modified single-linkage algorithm at step 170 for the 

trial data set 

H e r e  (of. T a b l e  6) t he  a v e r a g i n g  h a s  t a k e n  p l ace  u s i n g  t h e  o v e r l a p  coeff i -  
c i en t s  a f t e r  t h e  f inal  s t ep ,  b u t  w i t h  t h e  c l u s t e r  m e m b e r s h i p  c o d e s  o f  s t ep  170. 
N¢ = c l u s t e r  n u m b e r ,  Np = p o p u l a t i o n  o f  c lu s t e r .  

C l a s s  Arc Np 7", r2 

Phenyl 1 35 - 0 . 4  (I) 2.1 (2) 

Boat 2 34 2-9 (5) 68.3 
3 11 - 3 . 0 ( 1 0 )  56.4 
4 5 15.2 (6) 58.6 
5 4 24.6 (6) 52.3 

Chair 6 51 - 54.7 (3) 57.9 
7 4 - 58.2 (4) 78-8 

Half-chair 8 26 - 18.3 (6) 48.2 

Sofa 9 4 - 2 5 . 3  (12) 52.5 

Screw-boat 10 3 2.4 (13) 32.9 

7" 3 
- 2.4 (3) 

(5) - 69.5 
(6) - 57'0 
(7) -73"9 
(5) - 58.2 

(4) - 58.2 
(4) - 8 1 . 7  

(7) - 61-7 

(12) -54.4 

(8) -- 51"5 

7,4 7,5 7"6 
1'1 (1) 0"6 (2) -- I'0 (2) 

(6) --0"3 (4) 70"9 (6) --73"2 (7) 
(3) -- 1"0 (4) 57"5 (6) -- 52"4 (12) 
(11) 8"2(10) 6 6 " 0 ( 9 ) - - 8 1 " 3 ( 5 )  
(4) -- 14"3 (5) 85"9 (5) --92"9 (5) 

(4) 54"3 (6) --50"1 (7) 50"8 (6) 
(7) 81"2 (5) --69"9 (6) 52"3 (5) 

(7) 42"1 (7) -- 10"9 (6) -- 1"0 (4) 

(19) 27"9 (12) 0"1 (9) -- 1"4 (7) 

(9) 36"1 (14) --2"4 (8) -- 17"7 (8) 

expect a D3d chair-form ring with a mean puckering 
angle of 54.3 ° to be reported. Similar 'symmetri- 
zations' of the data reported in Table 7 might be 
deemed appropriate for other conformations. 

This process of cluster symmetrization, i.e. the 
coalescence of two or more symmetry variants of a 
given cluster which are close together in conforma- 
tional space, is not straightforward. A variety of 
approaches are possible, which extend the present 
algorithms, and which may produce a variety of 
results. The crux of the problem is to arrive at an 
acceptable definition of 'closeness' within which the 
coalescence of symmetry-related variants of a given 
cluster is allowed to occur. This is an essentially 
subjective judgement, as a perusal of the results of 
Table 7 will indicate, hence it must remain under 
user control if at all possible. A number of solutions 
to the problem have been examined and one, which 
is both flexible for the user and applicable to many 
different clustering algorithms, is currently being 
fully tested. Full details will be presented in a later 
paper in this series (Allen & Taylor, 1991). 

7. Discussion 

The symmetry-modified single-linkage algorithm 
described in this paper has performed well in identi- 
fying the conformational minima contained in a trial 
data set of six-membered carbocycles. The procedure 
does, however, suffer from two possible technical 
disadvantages. 

Firstly, the location of a suitable stop point to 
represent optimum clustering is a practical problem 
common to all agglomerative clustering algorithms. 
An extensive literature on the subject exists (Everitt, 
1980, pp. 64-67). We have chosen two very simple 
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graphical indicators, viz the plot of dissimilarity 
versus step number (commonly employed in many 
systems) and the plot of dissimilarity differences 
versus step number (which we believe to be novel). 
However, we would stress the necessity of examining 
complete listings of all clusters at various points 
before arriving at a decision as to the optimum step. 
A clear example is provided by the trial data set, 
where step 170 is the last step that preserves a 
distinction between the highly-puckered norbornane 
boats (cluster 2, Tables 6 and 7) and the more 
normal boats (cluster 3, Tables 6 and 7). The choice 
of the optimum-clustering step is really a choice as to 
the number of clusters (No) into which the basic data 
set is to be subdivided. In the case of conformational 
clustering, whether symmetry modified or not, this 
choice is subjective, and must be made in the light of 
what is chemically sensible for the fragment under 
study. The cluster listings, dissimilarity graphs and 
principal-component plots provide an impression of 
the multivariate data set, but the final decision is 
always in the hands of the user. 

Secondly, it is well known (Everitt, 1980) that the 
single-linkage algorithm is prone to problems caused 
by the 'chaining' effect. If two well-populated and 
discrete clusters (a) and (b) are connected by a chain of 
outlying observations, then the single-linkage 
algorithm has a tendency to coalesce (a) and (b) and the 
outliers into a single large cluster. Occasionally this 
can happen quite early in the process, with a 
resultant distortion of the overall results. 

A large number of alternative clustering 
algorithms exist which attempt to address these two 
fundamental problems. In the next paper (Allen, 
Doyle & Taylor, 1991a) we examine two of these 
procedures, and show how they can also be modified 

to take account of topological symmetry, to provide 
realistic alternatives to the single-linkage method. 
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the manuscript. MJD thanks St. John's College, 
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